
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2010; 63:651–680
Published online 1 June 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2090

Numerical simulation of free-surface flow using the level-set
method with global mass correction

Yali Zhang∗,†, Qingping Zou and Deborah Greaves

PRIMaRE Peninsular Research Institute for Marine Renewable Energy, Centre for Coastal Dynamics
and Engineering, School of Engineering, University of Plymouth, Devon PL4 8AA, U.K.

SUMMARY

A new numerical method that couples the incompressible Navier–Stokes equations with the global mass
correction level-set method for simulating fluid problems with free surfaces and interfaces is presented
in this paper. The finite volume method is used to discretize Navier–Stokes equations with the two-step
projection method on a staggered Cartesian grid. The free-surface flow problem is solved on a fixed grid
in which the free surface is captured by the zero level set. Mass conservation is improved significantly
by applying a global mass correction scheme, in a novel combination with third-order essentially non-
oscillatory schemes and a five stage Runge–Kutta method, to accomplish advection and re-distancing of
the level-set function. The coupled solver is applied to simulate interface change and flow field in four
benchmark test cases: (1) shear flow; (2) dam break; (3) travelling and reflection of solitary wave and
(4) solitary wave over a submerged object. The computational results are in excellent agreement with
theoretical predictions, experimental data and previous numerical simulations using a RANS-VOF method.
The simulations reveal some interesting free-surface phenomena such as the free-surface vortices, air
entrapment and wave deformation over a submerged object. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Efficient and accurate computation of incompressible free-surface flow problems has enormous
value in numerous scientific and industrial applications [1]. Applications include marine and coastal
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fluid–structure interactions, wave sloshing in tanks, wave loading and run-up, crystal growth, image
processing and so on.

Strategies for dealing with flows containing the free interface fall into two main categories. These
are interface-tracking methods [2–6] and interface capturing methods [1, 7–14]. The interface-
tracking methods include boundary integral method [2, 3], particle- tracking method [15] and
front-tracking method [4–6], in which the free surface is explicitly identified and tracked by
predefined markers. Generally the governing equations are solved within the single fluid and at
free-surface grid cells. An alternative to interface tracking is interface capturing, which includes
volume of fluid (VOF) methods [7, 11, 12] and level-set methods [1, 8, 9, 13, 14]. They differ from
interface tracking in that the solution may be obtained in both air and water with the fluid properties
changing at the interface. The free surface is implicitly captured by a contour of a certain volume
fraction function.

The boundary integral approach is efficient as only the interface separating liquid and gas
is discretized, but the approach assumes potential flow in each fluid and thus neglects viscous
effects, such as vortex shedding and separation. Furthermore, complex grid movement must be
implemented in order to continue the computation from one time step to the next [2, 3]. Particle-
tracking methods, such as smoothed particle hydrodynamics, SPH [15], are powerful in that they
eliminate the need for a mesh and so complex mesh movement issues. However, they can be
computationally expensive, especially in 3D, as they require a large number of closely spaced
particles to represent the fluid motion. In the front-tracking method for free-surface problems used
extensively by Glimm [5], Tryggvason et al. [6], markers distributed evenly on the interface are
used to track the interface. During a simulation, markers drift along the moving interface and may
become bunched or stretched in some areas. In these cases, markers are added, deleted or even
redistributed if necessary for the sake of regularity. This difficulty in handling changes in interface
topology is an inherent weakness of the front-tracking method.

The VOF method employs a volume fraction function, which is the fraction of volume of the
computational cell filled with the reference fluid. From the volume fraction, a reconstruction of the
interface is made and the interface is implicitly propagated by updating the volume fraction function.
Interface reconstruction from the volume fraction function is required to determine the weighted
density and viscosity for the computational cells and to compute the volume flux necessary for
the convective terms in the evolution equation. The choice of method to reconstruct the interface
geometry distinguishes members of the VOF method, e.g. simple line interface calculation (SLIC)
method by Noh and Woodward [11], piecewise linear interface calculation (PLIC) by Youngs [12],
SOLV-VOF by Hirt and Nichols [16] and parabolic reconstruction of surface tension (PROST) by
Renardy and Renardy [17]. VOF methods are conservative and can deal with topological changes
of the interface. However, a high order of accuracy is hard to achieve due to the discontinuity of
the volume fraction function. Also the properties of the interface such as normal and curvature are
difficult to calculate accurately.

The level-set method was proposed by Osher and Sethian [13] for curvature-driven motions.
Reviews of the level-set method are given by Osher and Fedkiw [18] and Sethian [19]. Application
of the method to incompressible multiphase flows is extended by Sussman et al. [20] and Chang
et al. [14]. The level-set function is defined as the signed shortest normal distance from the interface
in a fixed grid system. To distinguish between the two fluids, a positive sign is associated with one
fluid and a negative sign is attached to the other. Thus, the interface is represented by the zero level
set. Fluid properties can be calculated from the level-set function through a smoothed Heaviside
function. The evolution of the level-set function is governed by a standard advection equation, i.e.
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the level-set equation. The level-set method is capable of computing geometric properties of highly
complicated boundaries naturally and can be extended to 3D easily. However, one of the common
difficulties is how to keep the interface thickness finite and to conserve mass. Discretization of
the level-set equation can lead to significant numerical dissipation and cause a mass loss. Thus,
the level-set function is solved numerically using higher-order advection schemes. In the evolution
of the level-set function, a steep gradient of the distance function in areas of high curvature is
formed and the distance function drifts away from its property. This again causes mass conservation
problems. To alleviate such problems, the redistancing procedure introduced by Sussman et al. [20]
is performed. The detailed redistancing procedure is given by Sussman and Fatemi [21]. It improves
mass conservation significantly. However, it still does not eliminate entirely the mass imbalance
problem of the level-set method.

There have been several attempts to improve mass conservation of level-set methods. Enright
et al. [22] devised the particle-level-set method. The motions of massless particles seeded around
the interface are tracked. As the particles move with the same velocity as the level-set function,
they should not cross the zero level set unless numerical inaccuracies arise. With such an additional
constraint accounted for in the evolution of the level-set function, very good mass conservation
is achieved. Bourlioux [23] and Sussman and Puckett [24] coupled the level-set method with the
VOF method to use the strength of the VOF method in conserving mass. In the coupled level-
set/VOF approach, while the volume fraction function is used for mass conservation, the level-set
function is used for better approximation of geometrical quantities. Chang et al. [14] proposed a
re-initialization procedure to preserve mass during the evolution of the level-set function. The idea
is to conserve the total mass in the domain by solving a perturbed Hamilton–Jacobi equation to a
steady state. Although the total mass in the domain is well preserved, the mass conservation of each
individual fluid is not clear. Lakehal et al. [25] applied global area or volume correction technique
for mass correction. Mass conservation is deduced with the area or volume of the reference fluid
conserved. A correction through an iterative procedure is added to the level-set function so that
area or volume of the reference fluid represented by the new corrected level-set function is equal
to its initial area or volume. In all these cases, the original simplicity of level-set methods is
partly lost.

In this paper, a new approach is taken in which the global mass correction method [9] is coupled
together with the level-set and re-distancing operations, resulting in excellent conservation of mass
of the reference fluid (selected from one of the fluids). This in turn conserves the mass of other
fluids automatically. It is worth pointing out that the methodology differs significantly from the
free-surface method of Yap et al. [9]. First, a dual time stepping instead of simple explicit time step
is used to solve the global mass correction equation to speed up the convergence. Second, a third-
order essentially non-oscillatory scheme (ENO), instead of the second-order curve linear advection
method (CLAM) used by Yap et al. [9], is used to model convection in the level-set equation.
Also a five stage Runge–Kutta time integration method rather than a semi-implicit scheme with
deferred correction for the level-set equation is applied to better achieve total variation stability [26].
Finally, two-step projection instead of SIMPLER is used to resolve the velocity–pressure coupling.
This eliminates the need to solve two Poisson equations, resulting in an efficient computation.
Thus, a numerical method that couples 2D incompressible Navier–Stokes equations with the level-
set method in a Cartesian coordinate system is presented here for study of free-surface flows.
The paper is organized as follows. Section 2 presents the mathematical model for the Navier–
Stokes equations, smoothing method of the two phase flow system, level-set equation, redistancing
for the level-set and global mass correction. Section 3 describes the numerical methods for the
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Navier–Stokes solver and level-set solver. In Section 4, results obtained from application of the
coupled solver to four bench mark test cases are presented: (1) shear flow; (2) dam break; (3) solitary
waves; (4) solitary waves with submerged objects. Finally, conclusions are given in Section 5.

2. MATHEMATICAL MODEL

Governing equations for an incompressible fluid flow are the mass conservation equation and the
Navier–Stokes momentum conservation equations written as

�u j

�x j
=0 (1)

and

�ui
�t

+ �(uiu j )

�x j
=−1

�

�p
�xi

+ 1

�

��i j
�x j
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�
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where subscript i=1, 2 denotes the 2D geometrical descriptions and Cartesian tensor notation
is used. u j , p and x j are the velocities, pressure and spatial coordinates. fi represents the body
force. �i j is the viscous term given by

�i j =�

(
�ui
�x j

+ �u j

�xi

)
(3)

�, � are the density and viscosity appropriate for the phase occupying the particular spatial location
at a given instance of time. For immiscible liquids, density and viscosity are constant along particle
paths and they are advected by fluid velocity; therefore, they satisfy

��

�t
+u j

��

�x j
=0 (4)

and
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�t
+u j

��

�x j
=0 (5)

Owing to the existence of steep gradients in density and viscosity across the free surface,
excessive numerical diffusion is experienced when computing viscous flows [27] if Equations (4)
and (5) are solved. Instead, the level-set method is used to capture the interface between the two
phases. The level-set function � is defined as the signed distance function from the interface.
Henceforth, the phases with positive � and negative � will be denoted as phase 1 (liquid) and
phase 2 (gas) respectively for ease of presentation. The evolution of the level-set function is
governed by

��

�t
+u j

��

�x j
=0 (6)

Since the density and viscosity at the interface are discontinuous across the interface, either
excessive numerical diffusion or problems with oscillations around the jump are expected if there
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is no special treatment used at the front. To avoid these problems, an interface grid that explicitly
marks the position of the interface is introduced. Also to avoid introducing disturbances of length
scale equal to the mesh by having the properties jump abruptly from one grid point to the next, the
interface is not kept sharp but given a small thickness ε of the order of the mesh size [28]. In this
transition zone the fluid properties change smoothly from the value on one side of the interface to
the value on the other side. This artificial interface thickness is a function of the mesh size used,
only, and does not change during the calculations. Therefore, no numerical diffusion is present.
This transition zone is achieved by defining a smoothed Heaviside function.

H(�)=

⎧⎪⎪⎪⎪⎨
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0, �<−ε

�+ε

2ε
+ 1

2�
sin

(
��

ε

)
, −ε���ε

1, �>ε

(7)

where ε is related to the grid size and is usually taken as a factor of the grid spacing. Using the
smoothed Heaviside function, these properties are calculated using

�=(1−H)�1+H�2 (8)

where � can be density, viscosity or another property of interest. Since � is the signed normal
distance from the interface, it satisfies

∇|�|=0 (9)

When Equation (6) moves the level set �=0 at the correct velocity, � may become irregular after
some period of time [20]. In a complex non-uniform flow field, it is possible for � to develop steep
gradients from Equation (6), especially when the interface has a steep slope. As a consequence,
it becomes difficult to maintain a finite thickness of the transition zone. The computation of the
unit normal and curvature is no longer accurate and a significant loss or gain of mass occurs.
Thus, to ensure that � remains a distance function that satisfies Equation (9), redistancing must be
performed. This is achieved by solving for a second distance function �′ given by the following
equation:

��′

�t̄
+s(�)(|∇�′|−1)=0 (10)

Here, t̄ is a pseudotime for the variable �′, the initial condition is �′(x,0)=�(x) and s(�) is
the smoothed sign function defined as

s(�)= �√
�2+(|∇�|ε)2

(11)

For incompressible flows, the total mass is conserved in time. However, the numerical discretiza-
tion of the level-set formulation does not preserve this property in general. Even with the above
redistancing process for the level-set function, it has been found that a considerable amount of
total mass is lost in time [9, 14]. To overcome this difficulty, the global mass correction coupled
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with the first and second distance functions is used to preserve the total mass in time. Thus, the
steady-state solution to a third distance function �′′ is obtained using:

��′′

�t ′
=Mcor (12)

where t ′ and Mcor are a pseudotime, which can be different from t̄ , and mass correction factor.
The steady-state values of the second distance function �′ are used as the initial condition for
Equation (12).

There are two scenarios where mass surplus or depletion may occur during the computation
process. Mass must be removed or added to ensure the conservation of the reference phase. Thus,
the mass correction factor is calculated to ensure the mass conservation.

Mcor=sign(�ref)
Mo−Mt

Mo
(13)

where Mo and Mt are the original total mass and the total mass of the reference phase at time t ,
respectively. Either fluid can be chosen as the reference fluid. The original mass is the mass
calculated at the beginning. The mass at time t increases when there is an injection of the reference
phase but decreases when there is removal of the reference phase. Depending on the choice of the
reference phase, the mass of the reference can be calculated using

M=
{∑

�refHref�V, Href=1∑
�ref(1−Href)�V, Href=0

(14)

3. NUMERICAL METHOD

3.1. Navier–Stokes solver

A finite volume method is employed to solve the Navier–Stokes equations (1) and (2) on a staggered
Cartesian grid. The typical control volume (CV) for p, u, v is shown in Figure 1. A node (grid
point) labelled P is located at the centre of the pressure CV. The neighbouring nodes are denoted
as W, E, N and S. This CV has four boundaries, denoted by e, w, n and s (with area of Ae, Aw,
An and As , respectively). Scalar variables, such as pressure, density, viscosity and the level-set
variable, are stored at the node P. Velocity components are stored at the CV boundaries. While u is
staggered half a CV to the left, v is staggered half a CV downward. A staggered grid is adopted to
ensure strong pressure–velocity coupling and enforce mass conservation in each CV. The two-step
projection method [29] has been used to solve the momentum equations
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The first step is to introduce an intermediate velocity ũi as
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Figure 1. A staggered grid arrangement for the p, u, v control volume.

in which the superscript indicates the time level and �t is the time step size. The time step
size must satisfy the Courant–Friedrichs–Lewy (CFL) condition �t�min� 0.5/(|u|+|v|), � is the
whole computational domain. The intermediate velocity ũi does not include the pressure effect.
The second step is to update the intermediate velocity field onto a divergence free plane to obtain
the final velocity:

uk+1
i − ũk+1

i

�t
=− 1

�k
�pk+1

�xi
(17)

�uk+1
i

�xi
=0 (18)

Equation (18) is the continuity equation. Taking the divergence of Equation (17) and applying
Equation (18) to the resulting equation yields the Poisson pressure equation,

�
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= 1
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i

�xi
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Equation (19) is solved for the pressure using the intermediate velocity. The updated pressure
information is then used in Equation (17) to obtain the final velocity field.

Equation (16) can be cast into a general transport equation of the form:
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where � represents the unknown velocities u or v.
Integrating Equation (20) over a CV with the Gauss divergence theorem and rearranging gives

(�P −�0
P)�V

�t
+ Je− Jw + Jn− Js = S�V (21)
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where

Je=
(
u�− �

�

��

�x

)
e
Ae (22a)

and

Jn =
(

v�− �

�

��

�y

)
n
An (22b)

Jw and Js are fluxes on the west and south faces of the CV. All terms are evaluated at t+�t except
�0

P , which is evaluated at t. J terms in Equations (22) are evaluated at the CV surfaces. These J
terms need to be related to � at the neighbouring nodes. For this purpose, the mixed scheme [30]
is employed. For the east face of the CV, e, it is defined as

Je=
[
�1(‖Fe,0‖�P −‖−Fe,0‖�E )+(1−�1)Fe

(�P +�E )

2

]
−De(�E −�P) (23)

where

Fe=ue Ae (24)

De=
(

�

�

)
e

Ae

	xe
(25)

and ‖A, B‖ is defined as the greater of A and B.
The coefficient �1 is the weighting factor between the upwind and central difference method.

In practice, �1 is generally selected in the range of 0.3–0.5 to produce stable and accurate results.
�e and �e are the harmonic mean of value at the two adjacent grid points, and Jw, Jn and Js
are defined similarly. For numerical implementation, Equation (21) can be written in a compact
form as

aP�P =aE�E +aW�W +aN�N +aS�S+b (26)

where

aE =De[�1+(1−�1)(1−0.5|Pee|)]+‖−Fe,0‖
aW =Dw[�1+(1−�1)(1−0.5|Pew|)]+‖Fw,0‖
aN =Dn[�1+(1−�1)(1−0.5|Pen|)]+‖−Fn,0‖
aS =Ds[�1+(1−�1)(1−0.5|Pes |)]+‖Fs,0‖

aP =aE +aW +aN +aS+�V/�t

b= S�V +�V�0/�t

and the Peclet number, Pe, at CV faces,

Pee=Fe/De, Pew =Fw/Dw, Pen =Fn/Dn, Pes =Fs/Ds (27)
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The Poisson pressure equation can be expressed as

aP PP =aE PE +aW PW +aN PN +aS PS+b (28)

where

aE = Ae/(�
k�x)e

aW = Aw/(�k�x)w

aN = An/(�
k�y)n

aS = As/(�
k�y)s

aP =aE +aW +aN +aS

and

b= 1

�t
(ũk+1

e Ae− ũk+1
w Aw + ũk+1

n An− ũk+1
s As) (29)

The algebraic equations (26) and (28) are solved using the tridiagonal matrix algorithm [31].
3.2. Free-surface solver

Finite difference and related finite volume schemes are based on interpolations of discrete data using
polynomials or other simple functions. It is well known that a wide stencil leads to higher-order
accuracy interpolation. Traditional finite difference methods are based on fixed stencil interpo-
lations. However, fixed stencil interpolation of second or higher-order accuracy is necessarily
oscillatory near a discontinuity. There are two common ways to eliminate or reduce such spurious
oscillations near discontinuities. One way is to add an artificial viscosity [26]. The disadvantage
of this approach is that fine tuning of the parameter controlling the size of the artificial viscosity is
problem dependent. More recent approaches apply limiters to eliminate the oscillations. Since we
are interested in obtaining accurately the convection of the interface position, the non-conservative
form of the ENO scheme will be used. Furthermore, the ENO scheme is a higher-order scheme
and can have adaptive stencils. The key idea of ENO is to choose the locally ‘smoothest’ stencil
to approximate the numerical fluxes at the cell faces, among several candidates, and hence avoid
crossing discontinuities in the interpolation procedure as much as possible. Thus, the numerical
viscosity is adjusted adaptively by measuring the local smoothness of the solution to eliminate
spurious oscillation near the discontinuity. The ENO scheme was first described in the classical
paper of Harten et al. [32] for hyperbolic conservation laws and later extended to the efficient
implementation of ENO shock capturing schemes applied to the Hamilton–Jacobi equations by Shu
and Osher [26]. The higher-order ENO scheme is obtained from the lower-order ENO by making
use of a hierarchy of divided differences, and that makes the implementation of high-order ENO
schemes rather straightforward. The second level-set equation (redistancing equation) is modelled
based on Godunov’s method [8], and Equation (10) is advanced with the five stage Runge–Kutta
scheme which is total variation stable.

The convective terms are discretized as∫
�A

u j
��

�x j
dA=ui+1, j�e Ae−ui, j�wAw +vi, j+1�n An−vi, j�s As (30)
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The procedure for computing the quantity �e using the third-order ENO is as follows:

�3
e =�2

e+ 1

3
m2

(
3(n2−i)2−1

2

)
(31)

where �2
e is the second-order ENO expression,

�2
e =�1

e+ 1
2m1(1+2(i−n1)) (32)

and �1
e is the first-order upwind value,

�1
e =�n1 (33)

and

m1=
{
a− if |a−|�|a+|
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(34a)

m2=
{
b− if |b−|�|b+|
b+ otherwise

(34b)

n1=
{
i, ue�0

i+1 otherwise
(34c)

n2=
{
n1−1 if |a−|�|a+|
n1 otherwise

(34d)

Here, a− and a+ are first-order finite difference expressions and b− and b+ are second-order finite
differences,

a− = �n1, j
−�n1−1, j

a+ = �n1+1, j
−�n1, j

(34e)

b− = �n2−1, j
−2�n2, j

+�n2+1, j

b+ = �n2, j
−2�

n
2+1, j

+�n2+2, j

(34f)

Redistancing should be done to maintain the level-set function as the signed distance from the
interface. The computation of |∇�| in Equation (11) is performed based on Godunov’s method [8],

|∇�|=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
max(a2+,b2−)+max(c2+,d2−) if �>0

0 if �=0√
max(a2−,b2+)+max(c2−,d2+) if �<0

(35)
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where

a = �i, j −�i−1, j

�x
+ (xi, j −xi−1, j )

2
l−

b = �i+1, j −�i, j

�x
+ (xi+1, j −xi, j )

2
l+

c = �i, j −�i, j−1

�y
+ (xi, j −xi, j−1)

2
m−

d = �i, j+1−�i, j

�y
+ (xi, j+1−xi, j )

2
m+

(36)

l− =
{
a1 if |a1|�|a2|
a2 if |a1|>|a2|

l+ =
{
a2 if |a2|�|a3|
a3 if |a2|>|a3|

(37)

The + superscript denotes the positive part and the − superscript denotes the negative part, m−
and m+ are like l− and l+ but for b1, b2 and b3, also a1, a2 and a3 are the central differ-
ence approximations of �2�/�x2 on (xi−2, j , xi−1, j , xi, j ), (xi−1, j , xi, j , xi+1, j ), (xi, j , xi+1, j , xi+2, j ).

Finally, b1, b2 and b3 are the central difference approximation of �2�/�y2 on (yi, j−2, yi, j−1, yi, j ),
(yi, j−1, yi, j , yi, j+1), (yi, j , yi, j+1, yi, j+2).

Various time schemes were tested with the ENO method and five stage Runge–Kutta was found
to be stable and converge most quickly. A five stage Runge–Kutta time integration is used to
advance the solution in time from k to k+1 as follows [33]:

�(1)
P = �(k)

P −
1
�t

�V
R(�(k)

P )

�(2)
P = �(0)

P −
2
�t

�V
R(�(1)

P )

�(3)
P = �(0)

P −
3
�t

�V
R(�(2)

P )

�(4)
P = �(0)

P −
4
�t

�V
R(�(3)

P )

�(k+1)
P = �(0)

P −
5
�t

�V
R(�(4)

P )

(38)

where R=ui+1, j�e−ui, j�w +vi, j+1�n−vi, j�s and the coefficients are


1= 1
4 , 
2= 1

6 , 
3= 3
8 , 
4= 1

2 , 
5=1 (39)

Dual time stepping with a five stage Runge–Kutta is used to solve the global mass correction
equation to speed up the convergence of the mass correction. A five-stage Runge–Kutta time
integration algorithm is used between each physical time step to iterate the numerical solution in
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an artificial time � until convergence is reached [34]. Therefore, the converged solution from the
artificial steady-state equations becomes the time accurate solution at current physical time t .

4. COMPUTATION RESULTS

4.1. Shear flow

In order to assess the capabilities of the interface-tracking part of the numerical scheme, tests
are carried out for circular interfaces being advected through a prescribed velocity field. Only the
level-set equations and not the Navier–Stokes equations are solved. The following velocity field
on the unit square is used as the initial condition:

u = sin2(�x)sin(2�y)

v = −sin2(�y)sin(2�x)
(40)

Numerous researchers, such as Rider and Kothe [35], Ubbink [36], Olsson and Kreiss [37],
Greaves [38] and Yue et al. [8], used this flow field in the single vortex to assess the integrity and
capability of an interface-tracking method in cases where significant interface stretching occurs.
A circle with radius 0.15 centred at (0.5, 0.75) in a unit square is used as the initial condition.
The interface is first advected forward up to t=2.0s and then the velocities are reversed for the
same length of time in order to return to the initial condition. A perfect advection scheme should
be able to recover the initial circular interface.

Comparison of shear flow at different grid densities at t=1.5s is shown in Figure 2(a)–(c).
There is a filament in the tail at t=1.5s on grid 50×50 and the tail is much longer for the fine
grid 200×200. Figure 2(d) shows the mass error for different grid densities. The finer the grid, the
smaller the mass error. For the coarse grid, the mass error increases rapidly after a short time of
simulation. The mass is conserved very well on the fine grid. The simulations were performed in a
PC with a Intel(R) Core TM 2 CPU 6600@2.4GHz and 3.25GB RAM running on Windows XP
operative system. The calculation times per time step for grid 50×50, 100×100 and 200×200
were 0.19, 0.46 and 1.03 s, respectively.

Computations on a 200×200 grid were performed and the advected interface at t=0s, t=0.5s,
t=1.0s, t=1.5s and t=2.0s is shown in Figure 3. Third-order ENO schemes and global mass
correction were used for both advection and redistancing. After the flow reverses at t=2.0s
(Figure 3(e)), the resulting circular interface at t=4.0s is very close to the initial circular interface
(Figure 3(f)).

To quantify the numerical errors, the mass error is defined as

�error=
∣∣∣∣M(0)−M(t)

M(0)

∣∣∣∣×100% (41)

where M(t)=∫
Awater

�H(�)dA is the mass of the reference phase at the correct time t .
Figure 4 shows the time history of the mass error for the shear flow with the global mass

correction and without global mass correction. Mass losses occur where the initial interface is
most distorted without the global mass correction method. However, mass is conserved well up
to machine accuracy despite the highly shearing flow field and large topological changes of the
interface with the global mass correction method.
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Figure 2. Comparison of shear flow at different grid densities at time t=1.5s with
global mass correction: (a) 50×50 grid; (b) 100×100 grid; (c) 200×200 grid; and

(d) comparison of mass error for different grid densities.

Comparisons of long time simulations for shear flow between with and without the global mass
correction at t=3.0s, 4.0 s and 5 s are shown in Figure 5. With the dual time stepping global
mass correction scheme, the mass can be conserved for long time simulations compared without
the global mass correction. The fluid is torn into a filament by the shearing flow and becomes
thinner at t=5s with global mass correction while this phenomenon occurs at the earlier time at
t=4s without global mass correction. At t=5s without global mass correction, the interface will
disappear soon due to the poor mass conservation.

4.2. Dam break

Simulation of the dam break has been investigated numerically by various researchers, such as
Ubbink [36], Jeong and Yang [39, 40], Greaves [7], and experimental data exist from Martin and
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Figure 3. Shear flow at: (a) t=0s; (b) t=0.5s; (c) t=1.0s; (d) t=1.5s; (e) t=2.0; and (f) t=4.0s.

Moyce [41]. In the present study, the global mass correction level-set method is combined with
the Navier–Stokes flow solver and the simulation is carried out for different grid sizes. The initial
conditions for the dam break are shown in Figure 6(a). The still water column is initially in
hydrostatic balance. The unit square domain size is 4a×4a where a=0.05715m. A column of
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Figure 4. Time history of the mass error for the shear flow.

water a wide and 2a high is held in place at t=0 with a vertical wall, which is instantaneously
removed. When the dam fails, the still water column behind the wall starts to collapse. The water
has a dynamic viscosity of 1×10−3 kg/m/s and the air 1.8×10−5 kg/m/s, the density of water
is 1000kg/m3 and air 1kg/m3 and the acceleration due to gravity is taken to be g=9.81m/s2.
Initially the velocity everywhere is zero; no-slip boundary conditions are applied on all walls. The
thickness of the interface is fixed to be four grid sizes for the uniform grid case.

Snapshots of the water air interface and velocity vectors calculated on a uniform 128×128
grid with time step 0.0004 s are presented at non-dimensional time, T =0, 1.71, 3.99, 4.91, 6.45
and 8.15, where T = t

√
g/a, in Figure 6 alongside video images from Koshizuka et al. [42].

At T =1.71, the water is greatly accelerated and moves rapidly along the bottom wall. Later the
water column impacts the right-hand wall and climbs up it. Then the water against the right-hand
wall starts to fall back under the influence of gravity. When the surge front falls down from the
right wall and plunges into the bottom water, air is entrapped by the water, forming an air bubble.
The tongue of the moving water impinges on the left wall and traps an air bubble as well. The
velocity vector field shows that a large vortex is formed in the air region in the vicinity of the
water surface. The snapshots compare well with photographs of the experiment taken by Koshizuka
et al. [42] demonstrating that the proposed numerical method can capture the complex phenomena
involved in air bubble entrainment, wave breaking and splash up.

Figure 7(a) shows the comparison of the non-dimensional surge front positions s̄=s/a versus the
non-dimensional time T = t

√
2g/a between the present simulations on uniform grid sizes 32×32,

64×64 and 128×128 and Martin and Moyce’s [41] experiment. For all these simulations, the
predicted surge front positions are in an excellent agreement with the experimental data. Figure 7(b)
shows a similar comparison of the non-dimensional height of the water h̄=h/2a versus the non-
dimensional time T = t

√
g/a at the left-hand wall between the simulations and experiment. Good

agreement can be seen.
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Figure 5. Comparison of shear flow for long time simulations between with and without the global mass
correction at different times: (a) t=3s; (b) t=4s; and (c) t=5s. Left column with the global mass

correction and right column without.
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Figure 6. Dam break interface evolution and velocity vectors for grid 128×128, LHS
and video images taken by Koshizuka et al. [42]: (a) T =0; (b) T =1.71; (c) T =3.99;

(d) T =4.91; (e) T =6.45; and (f) T =8.15.
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Figure 6. Continued.

Figure 8 shows the mass error versus the time step for the dam break case. The global mass
correction reduces the mass error to machine zero, whereas without global mass correction, the
mass error is approximately 0.1%. This demonstrates that the present numerical method conserves
mass well than without the global mass correction.
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4.3. Solitary wave

A classical case used in the validation of the mathematical modelling of free-surface flows or
two fluid systems is the propagation of a solitary wave. The level-set method with global mass
correction is used to predict the run up on a vertical wall of a travelling solitary wave as shown in
Figure 9. h is the depth of still water and the channel size is 20h×2h. S0, Sc and Srunup represent
the amplitude of the solitary wave released from the left vertical wall, the amplitude of the solitary
wave at the horizontal centre of the computational domain and wave run up at the right-hand wall
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Figure 9. Computational domain of travelling solitary wave simulations.

boundary, respectively. The theoretical wave speed cw =√
gh=1m/s. Non-dimensional time T

is defined from T = t/(h/cw). A grid of 200×150 is used, with uniform spacing in the x and y
directions. The thickness of the interface is fixed at four grid sizes. The water and air have the
same values of dynamic viscosity and density as used above for the dam break simulation. To
generate a solitary wave, Laitone’s analytical approximation [43] can be used. An initially still
water surface with zero initial velocity and a Boussinesq profile from the left vertical wall, which
is in hydrostatic balance, is released:

S(x,0)= S0

/
cosh2

(√
3S0
2

x

)
(42)

Figure 10(a) shows the travelling train of the solitary wave and the climb at the right vertical wall
for the case S0/h=0.4. The wave speed measured from Figure 10(a) is 1.03, which is very close
to the theoretical value. Figure 10(b) shows a typical velocity field for S0/h=0.4, where, in order
to make the figure clear, vectors are plotted at every third node. There is a vortex formed at the
wave top.

Figure 11 shows the quantitative comparison for the wave run up at the right-hand wall boundary
versus incident wave amplitude. Eight cases with different initial wave amplitudes are simulated
and the run up at the right-hand wall boundary recorded. The computational results are compared
with the experimental data by Chan and Street [44] and numerical results by Lin et al. [45], Yang
and Stern [46]. The agreement between computation and experiment is very good for Sc/h<0.3.
Above 0.3, there are some differences between the experimental data and numerical simulations
and the experiment exhibits some scatter. However, these results demonstrate that the present
numerical method can accurately predict the viscous damping characteristics.

4.4. Solitary wave over a submerged rectangular object

In order to demonstrate the model’s ability to capture free-surface evolution in a more complex
situation, the simulation of a solitary wave passing over a submerged rectangular object is carried
out. A staggered non-uniform or uniform Cartesian grid is used with the block off method [31]
to handle the interior bodies, solid boundaries and highly irregular flow domains. The basic idea
behind this technique is that the submerged object can be modelled as a special case of two phase
flow with infinite viscosity within the object and zero velocity at the nominal boundary.
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Figure 10. (a) Travelling trains of a solitary wave and (b) a typical velocity field of a solitary wave.

Figure 12 shows the computational domain for the simulation of a solitary wave over a
submerged rectangular object. The rectangle is 0.4m in width and 0.08m in height and its leading
edge is located 2.6m from the inflow boundary. The computation domain is −3<x<3.5m and
−0.16<y<0.26m. A non-uniform grid system is used in the x direction; with minimum grid
size 0.001m being employed in the vicinity of the object. A uniform grid with grid size 0.002m
is used in the y direction. Behind the object from 0 to 0.1m, six locations from 1 to 6 have
been chosen to record the velocity distribution from the bottom to the free surface. The velocity
and the free-surface elevation at the inflow boundary are given according to the Boussinesq
equation [47] for solitary waves. The incoming solitary wave height is a 0.18h, where h=0.16 is
the still-water depth.

Two wave gauges are located in front of and behind the rectangular obstacle. Free-surface eleva-
tions are recorded in the present numerical simulation and then compared with the experimental
data and numerical simulation in [48] in Figure 13. It demonstrates that the present numerical
model can predict the free-surface profiles well.

More detailed wave motion and vortex generation can be seen in snapshots of the water air
interface contours and velocity vectors. Water air interface contours calculated on a non-uniform
grid with time step 0.0005s are presented at times, t=1.75, 2.7, 3.55 and 4.15 s shown in Figure 14.
Velocity vectors at time steps t=2.7, 2.9, 3.1 and 3.3 s are shown in Figure 15. Before the solitary
wave crest reaches the submerged object, the free surface maintains the solitary wave profile very
well as shown in Figure 14(a) due to the unidirectional flow above the submerged object. As it
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passes the submerged object, the wave becomes steepened with a larger wave height and short
wavelength due to the shoaling effect as shown in Figure 14(b) and a vortex is generated at the
weatherside of the rectangular object as shown in Figure 15(a). Owing to the wave crest being
directly above the vortex, the vortex is confined by the object and it is stretched in the downstream
direction as shown in Figure 15(b). The vortex at the weatherside of the crest becomes larger
during this wave crest passing the rectangular object as shown in Figure 15(c). Also flow separation
occurs and a vortex starts to form behind the submerged object. From Figure 15(c) to (d) the eye of
the vortex drifts slowly downstream. After the solitary wave has passed the submerged object, the
wave reduces amplitude with a trailing tail and a secondary wave is generated and propagated to
the leading edge of the object as seen in Figure 14(c)–(d). Overall the numerical model describes
the detailed evolution of the wave deformation and vortex generation well.
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Figure 13. Comparison of free-surface profiles before and after the object.

The velocities in the leeside of the submerged object are investigated in detail to show that
the model is able to predict the flow field near the object accurately. Figures 16 and 17 show the
velocity components in the horizontal and vertical directions, respectively, at six locations behind
the object and the corresponding free-surface position at time 3.09 s. It is observed that the present
numerical results are in good agreement with the experiment and numerical results by Chang
et al. [48]. There is a slight difference in horizontal velocity u on the bottom wall at the location
3–6 as shown in Figure 16. The differences observed at locations 1 and 2 coincide with a large
velocity gradient, as shown in Figures 16 and 17, and a finer grid may be necessary to resolve the
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Figure 14. Interface evolution of solitary wave over a submerged rectangular object for a non-uniform
grid: (a) t=1.75s; (b) t=2.7s; (c) t=3.55s; and (d) t=4.15s.

flow field further. In addition, Chang’s results [48] appear to agree better in this region and they
used RANS-VOF with k–ε turbulent model while our model does not include turbulence.

5. CONCLUSION AND FUTURE WORK

This paper presents a new method for coupling the incompressible Navier–Stokes equations with
the level-set method. The finite volume method is used to discretize Navier–Stokes equations with
the two-step projection method on a staggered Cartesian grid. The free-surface flow problem is
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Figure 16. The comparison of horizontal velocity u at six locations in the wake behind the
object velocity fields between the experimental measurements, previous numerical results and

presented numerical results at t=3.09s.
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Figure 17. The comparison of vertical velocity v at six locations in the wake behind the object between
the experimental measurements, previous numerical results and presented numerical results at t=3.09s.
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solved on a fixed grid in which the free surface is captured by the zero level set. Mass conservation
is improved significantly by applying a global mass correction scheme, in a novel combination with
third-order ENOs and a five stage Runge–Kutta method, to accomplish advection and re-distancing
of the level-set function. The coupled system is applied to benchmark tests, such as simulation
of shear flow, dam break and a 2D solitary wave, and also used to simulate a solitary wave
over a submerged object. The computational results are in excellent agreement with theoretical
predictions, experimental data and previous numerical simulations using a RANS-VOF method.
It demonstrates that the mass error can be reduced to machine zero with the new modified global
mass correction and the interface can be maintained very well for long time simulations with the
global mass correction despite the highly distorted flow fields. The complex interface changes such
as air entrapment, wave deformation and evolution, large vortices in the solitary wave and vortices
generation in the leeside and weatherside of the object are revealed well and in detailed manner.

By conducting numerical experiments, the method developed in the study is shown to be a
promising tool for simulating free-surface flow. Furthermore, the current model is a two phase
model and can treat air entrapment well near the free surface. It conserves mass and may be
readily extended to three dimensions since the initial Eulerian grid remains the same throughout
the simulation. Also it can be extended to model the compressibility for the air entrapped in
sufficiently small cavities required by practical applications such as the importance of dispersed
bubbles compressibility in the case of waves impacting against breakwaters. The easiest way to
account for the compressibility in this two phase model is to allow the density of the air to vary in
time. This approach can give reliable results, but faces some computational challenges connected
with the coupling of the two different fluids [49].
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